If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-42=58
We move all terms to the left:
4x^2-42-(58)=0
We add all the numbers together, and all the variables
4x^2-100=0
a = 4; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·4·(-100)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*4}=\frac{-40}{8} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*4}=\frac{40}{8} =5 $
| -5y+2=-4-(y+6) | | -4(2x+8)=-8+32 | | 2(x+34)=118 | | 36x=-115.2 | | 27.1-x=-10.4 | | 73+27k=937 | | -5/9m=2 | | 5^2(x-1)=625 | | 3(x=1)+4=10 | | 60+2x=300 | | 1-8x-x^2=0 | | 1,000,000=+3d(70-4) | | (72-x)/x=7/2 | | 3×(n+1)=5.4 | | -3(x+8=x-4 | | 5x+(3x)=(2x+5) | | 3(x^2-1)-15=0 | | 99=27x-3x+1+2 | | 5x+(3x)=2x+5) | | 20x-500=1500 | | 2s=-90 | | 11x+5=17x-19 | | 9(h+3)=-18 | | –7(–5n+9)=11(n+3)–8n | | -1x-10+2x=-1 | | 75=27x-3x+1+2 | | 7k-11=3k-3 | | 65-x=65 | | 10(4/5x-x)=10(x/10-15/2) | | 2x–7=2x+4 | | y=4+7×2 | | 11x+5+17x-19=180 |